Strong subdifferentiability and local Bishop–Phelps–Bollobás properties
نویسندگان
چکیده
منابع مشابه
Subdifferentiability and the Duality Gap
We point out a connection between sensitivity analysis and the fundamental theorem of linear programming by characterizing when a linear programming problem has no duality gap. The main result is that the value function is subdifferentiable at the primal constraint if and only if there exists an optimal dual solution and there is no duality gap. To illustrate the subtlety of the condition, we e...
متن کاملProperties of Strong Local Nondeterminism and Local Times of Stable Random Fields
We establish properties of strong local nondeterminism for several classes of α-stable random fields such as harmonizable-type fractional stable fields with stationary increments, harmonizable and linear fractional stable sheets. We apply these properties to study existence and joint continuity of the local times of stable random fields. Mathematics Subject Classification (2000). 60G52; 60G17; ...
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کاملOn the subdifferentiability of the difference of two functions and local minimization
We set up a formula for the Fréchet and ε-Fréchet subdifferentials of the difference of two convex functions. We even extend it to the difference of two approximately starshaped functions. As a consequence of this formula, we give necessary and sufficient conditions for local optimality in nonconvex optimization. Our analysis relies on the notion of gap continuity of multivalued maps and involv...
متن کاملRelating lexicographic smoothness and directed subdifferentiability
Lexicographic derivatives developed by Nesterov and directed subdifferentials developed by Baier, Farkhi, and Roshchina are both essentially nonconvex generalized derivatives for nonsmooth nonconvex functions and satisfy strict calculus rules and mean-value theorems. This article aims to clarify the relationship between the two generalized derivatives. In particular, for scalar-valued functions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
سال: 2020
ISSN: 1578-7303,1579-1505
DOI: 10.1007/s13398-019-00741-1